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ABSTRACT

An Operations Management Approach to Evaluating Health Policy Interventions

Eric Park

This dissertation analyzes health policy interventions from an operations management

perspective. To improve policy effectiveness, policymakers must have a good understand-

ing of the health delivery process and the policy implications. We study how health poli-

cies connect to care delivery operations and why policies may not achieve the intended

goal.

In Chapter 1, we study a county-wide ambulance routing policy intervention intended

to reduce fraction of ambulances diverted by restricting the duration and frequency of

emergency department (ED) ambulance diversion episodes. The econometric approach

based on the framework of strategic communication between service providers (EDs) and

potential customers (paramedics) identifies that EDs responded to the restrictions by im-

proving their patient flow processes and paramedics responded to this change by reducing

their level of compliance to the diversion thereby reducing the level of diversion. This

effect was counteracted by an increase in the level of diversion because fewer EDs were

simultaneously on diversion post-intervention. These mechanisms together explain the
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discrepancy between 65% reduction in ED time on diversion and 10% reduction in frac-

tion of ambulances diverted. The result encourages policymakers that a relatively light

intervention can induce EDs to improve their processes. However, such intervention might

not reduce diversions due to the complex interaction between EDs and paramedics.

In Chapter 2, we study the effectiveness of the Affordable Care Acts Hospital Read-

missions Reduction Program in motivating hospitals to reduce excess readmissions by

financially penalizing excess readmissions. We link readmissions performance to hospital

financials through a hospital admissions model and identify the opposing effects of reduc-

ing readmissions on hospital net income: profit loss due to reduced patient volume and

savings by avoiding penalty. The model predicts a window of readmission rate unique to

each hospital where it is financially incentivized to reduce readmissions. However, not all

hospitals are incentivized, because, either the readmission rate is outside of the window or

a window does not exist. Reducing the Floor Adjustment Factor will widen the window

and incentivize the former but not the later. Increasing the number of penalty applied

conditions will create a window for the later and widen it for the former.
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CHAPTER 1

Does Limiting Time on Ambulance Diversion Reduce

Diversions? Signaling Equilibrium and Network Effect

(joint with Sarang Deo and Itai Gurvich)

1.1. Introduction

Ambulance diversion is a phenomenon wherein overcrowded emergency departments

(EDs) request the Emergency Medical Services (EMS) agency to be put on an on-diversion

status for a specified period of time during which ambulance crews are advised to take

patients to neighboring EDs. Ambulance diversion has been associated with longer ambu-

lance transport times (Schull et al. 2003) and worse health outcomes (Shenoi et al. 2009)

including higher mortality (Shen and Hsia 2011). Pham et al. (2006) provide a detailed

review of various consequences of ambulance diversion. However, a growing body of ev-

idence suggests that diversion has limited ability to reduce ED crowding as the latter is

predominantly caused by inefficient patient-flow processes such as boarding of patients on

ED beds while waiting to be transferred to an inpatient bed (Allon et al. 2013, McConnell

et al. 2005, Hoot and Aronsky 2008). Accumulated evidence also points to a network ef-

fect of ambulance diversion: the likelihood of an ambulance being diverted at one ED is

affected by diversion statuses of its neighboring EDs (McCarthy et al. 2007), diversion

hours at neighboring EDs are correlated (Sun et al. 2006) and EDs in sparse networks

(with fewer neighboring EDs) spend fewer hours on diversion (Allon et al. 2013).
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Consequently, EMS agencies in several communities across the US have adopted a

network-wide approach to reduce ambulance diversion by restricting how often and for

how long EDs can be in an on-diversion status. Such policy interventions have reported

substantial reduction (60%–80%) in time spent by EDs on diversion (Lagoe et al. 2003,

Vilke et al. 2004, Patel et al. 2006, Asamoah et al. 2008), an extreme example being that

of 100% reduction in Massachusetts following a complete state-wide ban on ambulance

diversion (Burke et al. 2013). Yet, empirical evidence regarding the impact of such inter-

ventions on other operational measures is mixed. For instance, some interventions report

a reduction in the time required to offload ambulance patients (Burke et al. 2013) while

others report an increase (Asamoah et al. 2008). Also, one of the implicit objectives of

these interventions is to stimulate improvement in internal patient flow process at the EDs.

Indeed, several interventions are accompanied by optional best-practice recommendations

to participating EDs with regards to patient-flow management (Burke et al. 2013, Vilke

et al. 2004). Objective data on whether EDs actually implement these recommendations

is, however, difficult to obtain (Burke et al. 2013).

In this paper, we adopt an empirical approach using detailed operational data on am-

bulance transports in a network of EDs toward three objectives: (i) to uncover underlying

mechanisms of ambulance diversion, (ii) to understand the role of these mechanisms in

determining the impact of community-wide policy interventions on operational measures

(e.g. time on diversion, probability of diverting an ambulance, ambulance waiting time),

and (iii) to infer whether the policy intervention succeeded in stimulating EDs to im-

prove their patient flow processes. Next, we describe the conceptual model underlying
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our approach, which is based on the premise that diversion is a signal of crowding at the

ED.

1.1.1. Conceptual model of diversion status as a signal of ED crowding

Our conceptual model builds on recent analytical work in operations management (Allon

and Bassamboo 2009) that studies a service provider’s decision to communicate the level

of congestion in the system and the arriving customers’ response to this communication

through their joining behavior. Of particular relevance is Allon et al. (2011), which

characterizes a non-cooperative equilibrium wherein the service provider uses a binary

signal to communicate the state of the system. The two signals can be interpreted as

“busy” (e.g. on-diversion) when the queue exceeds a certain threshold and “not busy” (e.g.

off-diversion) otherwise. In equilibrium, customers follow a mixed strategy of whether to

join the queue or not given the signal. Under some conditions, it is shown that this signal

is informative in that the joining probability is lower when the signal is busy compared

to when it is “not busy”.

In line with the above model, we conceptualize that the ED chooses a threshold on the

level of crowding (e.g. number of patients in the ED including in service and waiting) and

uses an on-diversion signal (red light) when this threshold is exceeded and an off-diversion

signal (green light) otherwise (Allon et al. 2013, Deo and Gurvich 2011, Do and Shunko

2013, Ramirez-Nafarrate et al. 2013). The ambulance crew does not know the exact level

of crowding in the ED at the time of determining the destination of the patient. However,

over time (“in equilibrium”), they may form an estimate of the crowding level associated

with the on- and off-diversion signals. They evaluate the impact of the estimated level of
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Figure 1.1. A conceptual queuing model of diversion

crowding on the ambulance waiting time at the ED and on the patient’s quality of care

and compare it with the impact of longer transportation time to reach an off-diversion

neighboring ED. Based on this comparison they decide whether to comply with the ED’s

diversion signal and divert the ambulance or not. Thus, the diversion signal is only a

recommendation and the paramedics are not required to comply with the signal.

We term the diversion signal to be informative if the estimated level of crowding

associated with it is such that the paramedics comply with the signal and the likelihood

that they divert an ambulance from an on-diversion ED is higher relative to an off-

diversion ED. We also define strength of the diversion signal as the difference between the

likelihood of diverting an ambulance from an on-diversion ED compared to an off-diversion

ED.

Actions taken by the ED following the policy intervention to reduce time on diversion

and the paramedics’ response to these actions can affect the strength and the informa-

tiveness of the diversion signal. Suppose that the ED improves its processes (reflected

by a higher service rate in Figure 1.1) without changing the diversion threshold. Then,
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the crowding level that the paramedics associate with the diversion signal will be lowered

in the long run (in equilibrium). Consequently, they will be more likely to overrule the

diversion status of the nearest ED and less likely to undertake longer transportation times

to the neighboring ED. In other words, the diversion signal will become weaker. However,

if the EDs respond by merely increasing the crowding threshold that triggers the on-

diversion status, the paramedics will learn this in equilibrium and respond by decreasing

the likelihood of overruling the diversion statutes; the signal will become stronger.

The outcome of the strategic interaction between the ED and the paramedics outlined

above depends, also, on the diversion status of neighboring EDs. If several of these are

on diversion simultaneously, a coordination guideline employed by many EMS agencies

referred to as “All on Diversion, Nobody on Diversion” or simply ADND (Fatovich et al.

2005, Mihal and Moilanen 2005, Schneider et al. 2001, Vilke et al. 2004) provides more

leeway to paramedics in overruling the diversion status and thus decreases the likelihood

of diversion. However, the frequency with which this guideline is invoked may change

post-intervention depending on the magnitude of the reduction in time on diversion at

each ED.

1.1.2. Study preview

We apply the above conceptual framework to formulate hypotheses regarding the mecha-

nism underlying ambulance diversion and test them using evidence from a policy interven-

tion in Los Angeles (LA) County, California, implemented in April 2006. Pre-intervention,

EDs did not face any restriction on the frequency and duration of diversion episodes. Post-

intervention, the regulation mandated that the duration of an ED diversion episode should
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not exceed 1 hour and that the interval between two consecutive diversion episodes should

be at least 15 minutes.

For our empirical analysis, we assemble a unique dataset comprising more than 46000

ambulance dispatches in a network of seven geographically proximate EDs over the years

2003-2009. The dataset consists of three different parts: (i) ambulance routing information

such as the intended and the actual destination of the ambulance and the reason for

diversion, if the two are different; (ii) information entered by the paramedics such as

patient characteristics (age, gender and vital signs), and various time stamps such as the

time of dispatch, the time of arrival at the scene and the time of arrival at the ED; and

(iii) the start and end time of each diversion episode at each of the seven EDs over our

study period.

We estimate a Probit model to study the paramedics’ response to the diversion signal

of the nearest ED and how this response changes after the policy intervention. We control

for the status of neighboring EDs to account for the effect of the ADND policy described

above. We also control for observable patient factors and fixed effects corresponding to

the ED, time of day, day of week, month and year. Similarly, we estimate a two-part

model (Probit and OLS) to study the effect of the diversion status of an ED and the

policy intervention on the probability of delay (non-zero waiting time) and the expected

ambulance waiting time conditional on being delayed at the ED.

We find that, pre- and post- intervention, the probability of an ambulance being

diverted from an on-diversion ED was higher than that from an off-diversion ED when its

neighboring EDs are off-diversion. This validates the role of diversion as an informative

signal of ED crowding for paramedics. Second, an ambulance facing an on-diversion ED
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with off-diversion neighbors (so that diverting is possible) had a lower probability of being

diverted after the intervention. Third, the likelihood of diverting an ambulance during

an off-diversion period remained unchanged post-intervention. Fourth, the increase in the

likelihood of diverting during on-diversion periods (compared to off-diversion) was lower

post-intervention. This implies that the diversion signal was weaker in the equilibrium

established between the EDs and the paramedics post-intervention. Finally, irrespective

of pre- or post-intervention, ambulances were less likely to be diverted from the nearest

ED if the nearest and neighboring EDs are all on diversion providing empirical evidence

for the network effect (Allon et al. 2011, Deo and Gurvich 2011, Sun et al. 2006).

These findings uncover the complex multifaceted impact of the policy intervention on

diversion probability and on time EDs spend on diversion. On the one hand, reduction

in diversion hours at each ED had negative impact (decrease) on the overall diversion

probability, as expected. This effect was reinforced by the “weakening” of the diversion

signal, i.e., the probability of diversion from an on-diversion ED with off-diversion neigh-

bors reduced post-intervention due to the paramedics’ anticipation of reduced crowding

at the EDs. On the other hand, the reduction in the likelihood of multiple neighboring

EDs being on diversion simultaneously had a positive impact (increase) on the diversion

probability due to the network effect described above. The net impact of these mecha-

nisms was that time on diversion by 68% but the diversion probability reduced only by 8%

post-intervention. We further find that, regardless of the intervention, ambulances waited

less at an on-diversion ED compared to an off-diversion ED because of the lower arrival

rate of ambulances during on-diversion periods. However, ambulance waiting time at an

on-diversion ED increased because of the increased arrival rate (i.e., reduced diversion
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probability) post-intervention. Again, a combination of these opposing effects resulted in

only 2% reduction of ambulance waiting time post-intervention.

We test the robustness of these findings to various changes in our models’ specifications

as well as for potential endogeneity resulting from other sources of information (apart

from the diversion signal) that might be available to paramedics when they make their

transport decisions.

1.1.3. Contribution to the related literature and policy implications

Previous studies of region-wide coordination programs to reduce ambulance diversion

(Vilke et al. 2004, Asamoah et al. 2008, Patel et al. 2006, Lagoe et al. 2003, Burke

et al. 2013) have used monthly data to report the impact of the intervention on diversion

hours but did not directly test for the mechanisms underlying the observed changes. We

contribute to this literature in two ways. First, we use the theoretical framework of

signaling in queues (Allon and Bassamboo 2009) to construct hypotheses regarding: (i)

the strength and the informativeness of the diversion signal for crowding in the ED based

on paramedics’ compliance to it, and (ii) the impact of the policy intervention on the

signal’s strength. This construction allows us to study rigorously whether EDs undertake

process improvements in response to the policy intervention and how paramedics respond,

in turn, to the EDs’ actions. Second, we use individual ambulance transports (as against

aggregated monthly data), which enables us to control for other factors that might affect

the diversion probability.

Our empirical study also contributes to the nascent OM literature on signaling in

queues by: (i) identifying an “informative” equilibrium in a novel application context and
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studying how this equilibrium is altered by an outside intervention. Our empirical anal-

ysis raises interesting theoretical questions beyond the immediate context of ambulance

diversion: When is it beneficial for a service provider to increase its capacity in the pres-

ence of strategic communication with the customer regarding the extent of congestion?

How does a change in service capacity alter the provider’s communication strategy?

Finally, our work complements recent analytical work on ambulance diversion. Deo

and Gurvich (2011) develop a stylized game theoretic queuing model of two EDs, where

each ED chooses its own diversion threshold to minimize the average waiting time of its

patients. They establish the existence of a defensive equilibrium, wherein both EDs are

always on diversion but effectively do not divert any ambulances at all because of the

ADND policy. Hagtvedt et al. (2009) reach a similar conclusion using an agent-based

simulation model. Ramirez-Nafarrate et al. (2013) characterize the optimal threshold

structure of the diversion policy and Do and Shunko (2013) propose a (partially) central-

ized routing policy that is pareto-improving for both EDs. All these models implicitly

assume that paramedics perfectly comply with the diversion signal rather than interpret-

ing it and responding to it based on the interpretation. We contribute to this literature

by explicitly considering the decision making process of the paramedics in response to the

ED diversion signals.

Our findings also have important policy implications. First, an intervention primarily

aimed at reducing diversion hours can be successful at triggering improvements in patient

flow processes at the EDs without introducing explicit incentives towards such process

changes. Second, focusing on diversion hours as a performance metric might overestimate

the efficacy of the intervention because it is likely to have a smaller impact on, arguably,
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more important driver of adverse patient outcomes namely the fraction of diverted ambu-

lances. This differential impact is likely to be more substantive in settings where the mag-

nitude of the network effect (multiple EDs simultaneously on diversion) pre-intervention

is high. Third, increased efficiency of patient flow processes post-intervention might not

always result in lower ambulance waiting time at the EDs because it can be outweighed

by an increase in arrival rate of ambulances. This provides one potential explanation for

the contradictory results in previous studies regarding changes in ambulance waiting time

following similar community-wide interventions (Asamoah et al. 2008, Burke et al. 2013).

1.2. Study Setting

We study the effect of a diversion policy intervention, implemented by the Los Angeles

County EMS (LACEMS) agency in April 2006. We focus on ambulance transports in a

network of seven geographically proximate EDs located within a 5 mile radius in the

North-West suburbs of Los Angeles. The average distance between EDs in the network is

4.3 miles and the travel time under regular traffic is 12.4 minutes. Our study network is

relatively “closed” in that more than 80% of the ambulances originally intended for the

EDs in the network were received within the network. Moreover, if one considers the set

of the three closest EDs for each of the seven EDs, 19 out of 21 EDs in this set are in the

study network and constitute 91% of all traffic interactions. Next, we describe various

policies that govern ambulance traffic in this setting.
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1.2.1. ED diversion policy

EDs may declare diversion status due to ED crowding, unavailability of critical equipment

(e.g. CT scanner, operating room) or specialists (e.g. neurosurgeon, trauma care team),

and internal disaster (e.g. flooding, fire, power outage). EDs communicate the start and

end time of each diversion episode to the EMS agency in real time through the Reddinet

electronic system (http://www.reddinet.com). Each ED maintains its own criteria for

declaring an on-diversion status.

Until March 2006, the EMS agency did not restrict the usage of diversion status by the

EDs in any way. In April 2006, LACEMS revised its diversion policy with the objective

of reducing the EDs’ use of the on-diversion status. Under the revised policy, an ED was

allowed to remain on diversion for up to an hour, after which the status was automatically

updated to off-diversion (or “open”). The EDs were required to be off-diversion for at

least 15 minutes in between two on-diversion periods. The policy also included other

provisions aimed at reducing the usage of diversion status by the EDs. It required that

the ED nurse in-charge undertake preventive measures for relieving ED crowding such as

expediting patient discharges and laboratory and radiological tasks. It mandated that

the diversion status be updated by the hospital CEO or an appropriate administrative

representative instead of the ED staff and empowered the EMS agency staff to perform

unannounced site visits to verify compliance with the policy guidelines.

1.2.2. Ambulance transport policy

The LACEMS agency designates a limited number of hospitals, called “base hospitals”, to

coordinate the transport of ambulances from the scene (patient’s initial location) to their
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final destination. A mobile intensive care nurse at the base hospital and the ambulance

crew (jointly referred to as “paramedics”), assess the medical condition of the patient.

Under normal circumstances, the paramedics direct all patients to the most accessible

receiving ED (MAR) that is staffed and equipped to provide appropriate care for the

patient’s medical condition. The MAR is usually the one that has shortest travel time

from the scene, which itself may depend on the distance, traffic and weather conditions.

The actual destination of an ambulance is determined by the patient’s preference,

the type of ambulance1 and the discretion of the paramedics in the following hierarchical

manner. Patients can request to be transported to a facility other than the MAR because

of their preferred physician or health plan and the paramedics must comply with the

patient’s request. Even in the absence of an explicit patient preference, a basic life support

(BLS) unit must be transported to the MAR irrespective of its diversion status. However,

paramedics on an advanced life support (ALS) unit whose MAR is on diversion can

transport the patient to an alternative receiving ED (REC) if it is deemed to be better

for patient care. Thus, an ambulance is labeled as diverted if MAR 6= REC. Because BLS

ambulances cannot be diverted due to ED crowding, we focus only on the transport of

ALS ambulances in our analysis.

1.3. Hypotheses

In this section, we draw upon our conceptual framework (§1.1.1) based on the strate-

gic communication between EDs and paramedics to formulate hypotheses regarding the

1Ambulances are classified either as Advanced Life Support or Basic Life Support (BLS) units. BLS
units are designed for inter-facility transportation and pre-hospital response to ill or injured patients.
ALS units, which respond to 911 calls, extend BLS units to further support circulation and provide an
open airway and adequate breathing. They can administer certain medications, have cardiac monitors,
advanced cardiac life support equipment and blood glucose testing equipment.
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impact of diversion status and policy intervention on the ambulance diversion probability

and on the time ambulances wait to offload their patients. Recall that EDs decide on a

threshold level of crowding and use the diversion status to signal that to the paramedics.

Paramedics, in turn, use the MAR’s signal to infer the underlying level of crowding,

consequent ambulance waiting time and quality of care that would be provided to the

patient. They then compare this with transport times to neighboring EDs and their

diversion statuses to determine whether they should comply with the MAR’s signal or

overrule it, i.e., whether to divert the ambulance or not. Building on the conceptual model

in the introduction, we first ask whether the signal is informative (decision-relevant) to

paramedics?

Consider a situation where the paramedic is indifferent between transporting the pa-

tient to an off-diversion MAR or one of its neighboring off-diversion ED. Now, when the

MAR is on-diversion, everything else being equal, this paramedic should be willing to

transport the ambulance to the neighboring ED if she believes that the ambulance wait-

ing time and consequent quality of care would be sufficiently worse at the on-diversion

MAR. In that case, the likelihood of diverting the ambulance from the MAR would be

greater during the on-diversion periods and we would deem the diversion signal to be

informative. Hence, we arrive at the following hypothesis:

Hypothesis 1. Both pre- and post-intervention, an ambulance is more likely to be

diverted from an on-diversion MAR compared to an off-diversion MAR.

The policy intervention imposes a constraint on the frequency and duration of diver-

sion episodes. As discussed earlier, the EDs can respond to this constraint by following
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LACEMS agency’s recommendations and improving their patient flow processes. This will

enable the EDs to avoid periods of severe crowding thereby reducing the fundamental need

for diversion without changing the diversion threshold. EDs can choose process improve-

ments that apply to all crowding levels (e.g. overall increase in staffing level, installation

of IT solutions to improve visibility of available beds) or those that apply only to periods

of high crowding (e.g. early discharge policies in the ICU when the number of boarding

patients exceeds a certain threshold, increase in staffing level only during busy periods

of the day). In both cases, because of the nonlinear dynamics of queuing systems, the

impact of increase in service rate will be greater during on-diversion periods as they are

more congested compared to off-diversion periods. In equilibrium, paramedics will learn

to associate lower crowding level (compared to pre-intervention) with the on-diversion

signal. Consequently, a paramedic who was pre-intervention indifferent between taking

the ambulance to an on-diversion MAR or diverting it to a neighboring off-diversion ED,

will prefer post-intervention the on-diversion MAR because of the lower crowding levels.

This leads to the following hypothesis:

Hypothesis 2(A). An ambulance is less likely to be diverted from an on-diversion

MAR post-intervention compared to pre-intervention.

The EDs can also reduce time spent on diversion by simply increasing the threshold

that triggers the diversion signal. In contrast to the first strategy, this will increase the

average crowding level during both on-diversion and off-diversion periods. However, due

to the nonlinear dynamics typical of queuing systems, the impact of increased crowding

will be much higher during on-diversion periods compared to off-diversion periods. Again,
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the paramedics will learn that on-diversion periods are associated with higher crowding

post-intervention. Hence, the paramedic who was indifferent pre-intervention will prefer

an off-diversion neighboring ED over the on-diversion MAR post-intervention. This leads

to an alternate characterization of the post-intervention equilibrium as follows:

Hypothesis 2(B). An ambulance is more likely to be diverted from an on-diversion

MAR post-intervention.

Next, we turn our attention to the likelihood of an ambulance being diverted when the

MAR is off-diversion. Irrespective of whether the EDs undertake process improvement or

not, the paramedics continue to compare off-diversion MAR with off-diversion neighboring

EDs in this case. As a result, the underlying trade-off in their decisions does not change

post-intervention. In other words, a marginal paramedic who was indifferent between

transporting the ambulance to an off-diversion MAR vs. an off-diversion neighboring ED

will continue to be indifferent post-intervention too, yielding the following hypothesis:

Hypothesis 3. The likelihood of an ambulance being diverted when the MAR is off-

diversion will remain unchanged post-intervention.

Next, we focus on the equilibrium “strength” of the diversion signal which is captured

by the difference in the likelihood of diverting an ambulance during on-diversion periods

compared to off-diversion periods. If EDs undertake process-improvement efforts, then as

previously argued, the impact on crowding and, consequently, on patient outcomes will

be greater during on-diversion periods due to the nonlinear queuing dynamics. In this

case, the paramedics will learn that on- and off-diversion periods are less differentiated
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post-intervention, compared to pre-intervention. In other words, the diversion signal will

be weaker, which leads us to the following hypothesis.

Hypothesis 4(A). The increase in likelihood of diverting an ambulance from an on-

diversion MAR (compared to off-diversion) will be lower post-intervention compared to

pre-intervention.

Instead, if the EDs increase the diversion threshold, the expected crowding level dur-

ing both off-diversion and on-diversion periods will increase. However, because of the

nonlinearity of queuing dynamics, the latter will increase more than the former. In other

words, the two periods will become more distinguishable from each other post-intervention

compared to pre-intervention thus making the signal stronger in equilibrium. This yields

the following alternate hypothesis:

Hypothesis 4(B). The increase in likelihood of diverting an ambulance from an on-

diversion MAR (relative to off diversion) will be higher post-intervention compared to

pre-intervention.

Queuing theory predicts that changes in arrival rates will lead to commensurate

changes in ambulance waiting times (measured as the time between the ambulance’s

arrival at ED until the patient is offloaded and the ambulance is again available for dis-

patch). First, Hypothesis 1 states that arrival rate of ambulances will be lower during

on-diversion periods compared to off-diversion periods. Moreover, the service rate during

on-diversion period is likely to either remain unchanged or actually increase (based on

speed-up behavior observed in Kc and Terwiesch (2009), Batt and Terwiesch (2012).). A

combination of these two reinforcing effects leads us to the following hypothesis:
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Hypothesis 5. Both pre- and post-intervention, ambulance waiting times will be

shorter during an on-diversion period compared to an off-diversion period.

At first glance, the above hypothesis might seem counterintuitive. First, excessive

crowding is likely to trigger diversion but the level of crowding is likely to come down as

staff reacts and responds to the situation. Second, one might expect that lower waiting

time will attract more ambulances to an on-diversion ED thus pushing up the waiting

time until it is equal to that of an off-diversion ED. However, recall that the paramedics’

decisions are not based solely on waiting time of the ambulance but on patient outcome,

which is likely to depend on the sum of waiting time and transport time (§1.1.1).

If, in response to the policy intervention, the EDs only increased the ED-diversion

threshold and this resulted in fewer ambulances arriving during on-diversion periods (Hy-

pothesis 2(A)(B)), ambulance waiting times at an on-diversion REC should be lower post-

intervention. If, instead, the EDs improve their patient flow processes and if paramedics

responded to these changes by increasing the arrival rate (Hypothesis 2(A)(A)), the net

change in ambulance waiting time would depend on which effect is dominant: if the effect

of increased service rate is grater than that of increased arrival rate, it will lead to de-

creased waiting time, else it will lead to increased waiting time. This leads to the following

pair of competing hypotheses:

Hypothesis 6(A). Ambulance waiting times at an on-diversion ED will be longer

post-intervention.

Hypothesis 6(B). Ambulance waiting times at an on-diversion ED will be shorter

post-intervention.
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1.4. Methods

In this section, we describe various components of our dataset, construction of out-

comes and predictors, and finally the empirical specifications using these measures to test

the hypotheses developed in §1.3.

1.4.1. Data

We obtain three datasets from different sources in collaboration with the LACEMS agency.

They span a period of 39 months pre-intervention (January 2003–March 2006) and 57

months post-intervention (April 2006–December 2009) and include information on more

than 46000 ALS ambulance transport during this period to 7 geographically proximate

EDs in northwest part of the LA county. We include more information on them below.

(i) The ED diversion dataset is obtained directly from the Reddinet system (§1.2.1).

It includes the start and the end time of each ED diversion episode, measured

at the granularity of minutes, announced by the EDs from January 2003 to

December 2009.

(ii) The ambulance routing dataset is obtained from the base hospital that coordi-

nates routing of ambulances to the seven EDs. For each ALS ambulance that

was intended for one of the seven EDs in our network from January 2003 through

December 2009, the dataset includes the following fields: ambulance sequence

number, time at which the ambulance crew contacted the base hospital to know

the diversion status of EDs and decide on the destination (called the incidence
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time), identity of the most accessible receiving ED (MAR) and the actual re-

ceiving ED (REC). It also reports a rationale for diversion if REC 6= MAR, e.g.

patient request, trauma patient, ED saturation.

(iii) The ambulance sequence dataset, spanning the periods from January 2003 through

December 2006 and from January 2009 through December 2009 (data from Janu-

ary 2007–December 2008 are missing) is obtained from the Los Angeles City Fire

Department, which operates ALS ambulances. It contains the age and gender of

the patient along with vital statistics such as blood pressure and pulse rate. The

dataset includes, in addition, various time stamps of key events during ambulance

transport such as the arrival time at the scene, the arrival time to the REC, and

the time at which the ambulance became available after offloading the patient.

We merge the ambulance routing and ambulance sequence datasets by the sequence

number, which uniquely identifies each ambulance run. Then, for each ambulance se-

quence we add the diversion status of the MAR at its incidence time because it plays

a critical role in the paramedics’ decision of whether to divert the ambulance or not.

Our final dataset includes 46842 ambulance transports; 22530 pre-intervention from Jan-

uary 2003 through March 2006 and 24312 post-intervention from April 2006 and through

December 2009.

Table 1.1 summarizes the impact of the policy intervention on the main outcome

variables. The policy intervention reduced the time spent by EDs on diversion by 68.2%;

from 24.2% pre-intervention (2199 hours per year) to 7.7% post-intervention (750 hours

per year). The magnitude of this reduction reflects one dimension of the effectiveness of the

policy intervention and is comparable to earlier reports of similar interventions (Vilke et al.



www.manaraa.com

30

Table 1.1. Descriptive statistics: ED Time-on-diversion & Fraction of Am-
bulances Diverted

Pre-intervention Post-intervention Change

Fraction of ED time-on-diversion 0.242 0.077 -68.2%

Fraction of ambulances whose MAR is on diversion 0.190 0.068 -64.2%

Fraction of Ambulances diverted (overall) 0.269 0.247 -8.2%

Fraction diverted (MAR is on-diversion) 0.618 0.706 14.24%

Fraction diverted (MAR is off-diversion) 0.108 0.136 25.92%

Average ambulance waiting time (overall) (min) 15.44 15.14 -1.9%

Average waiting time (REC is on-diversion) (min) 13.44 14.39 6.32%

Average waiting time (REC is off-diversion) (min) 15.63 15.16 3.00%

2004, Asamoah et al. 2008, Patel et al. 2006). A natural consequence of this was a 64.2%

reduction in the fraction of ambulances whose MAR was on-diversion at the incidence

time from 19% pre-intervention to 6.8% post-intervention. However, the reduction in

the fraction of diverted ambulances and their waiting time was not commensurate with

the reduction in time on diversion: 8.2% and 1.9%, respectively. Further, the diversion

probability during both on- and off-diversion periods actually increased by 14.24% and

25.92%, respectively and the average ambulance waiting time during on-diversion periods

increased by 6.32% post-intervention. One of the objectives of our empirical analysis is

to provide a detailed account of these seemingly discrepant observations based on the

hypotheses developed above.

1.4.2. Outcome Variables

We use two outcome variables to understand the underlying mechanisms through which

the policy intervention reduced the time on diversion, i.e., whether EDs improved their
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patient flow processes or increased the diversion threshold. First, we use a binary variable

Divk, which is 1 if ambulance k is diverted from the most accessible receiving ED (MAR),

i.e., if REC 6= MAR, and 0 otherwise. Second we use a continuous variable Waitk to

represent the ambulance waiting time at its receiving ED (REC).

1.4.3. Predictor Variables

ED diversion statuses (MARd, RECd, disid): Paramedics’ decision of whether to

divert the ambulance or not depends primarily on the diversion status of the MAR, which

we denote using a binary variable MARdk, which is set to 1 if the MAR is on diversion

at the incidence time of ambulance k and 0 otherwise. To account for the fact that the

probability of diverting an ambulance also depends on the diversion statuses of MAR’s

neighboring EDs, we introduce the diversion statuses of the three nearest EDs to the

MAR at the incidence time of ambulance k, denoted by dis1dk, dis2dk, dis3dk, where 1 is

the closest ED and 3 is the 3rd closest ED to the MAR.

In contrast, the time an ambulance waits to offload its patient depends on the diversion

status of the receiving ED (REC) at its arrival time and does not depend on the status

of the neighboring EDs. For the model that estimates the ambulance waiting time, we

use a binary variable RECdk = 1 to denote that the receiving ED of ambulance k was

on diversion status at the arrival time of ambulance k to the ED. We set RECdk = 0

otherwise.

Policy intervention (AFTER): We introduce a binary variable AFTERk that is set

to 1 if ambulance k was incident after the policy intervention, i.e. on or after April 1st,
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2006. We set this variable to 0 for ambulances that were incident pre-intervention, i.e.,

on or before March 31st, 2006.

1.4.4. Control Variables

Patient request (Req): A patient’s request to be taken to a specific ED takes prece-

dence over all other considerations. Hence, we introduce a binary variable Reqk that is

set to 1 if the patient had requested to be transported to an ED other than the MAR and

is set to 0 otherwise.

Time fixed effects (T): Service rates in EDs and potential arrival rates to EDs are

known to be non-stationary, i.e, to vary over time regardless of the diversion mechanism.

We introduce a series of fixed effects to account for these variations. First, we use hour of

day to account for the intraday non-stationarity in the arrival pattern and consequently

in the crowding levels, e.g. late afternoons tend to be more crowded then early mornings.

Second, we include day of week to account for any predictable variability in ED and

inpatient departments’ occupancy over the course of the week. Third, we include a fixed

effect for each month to account for seasonal trends such as the annual flu epidemic.

Last, we include a fixed effect for the year to control for any long term trend in diversion

patterns that is common across all EDs. In some alternate specifications, we include a

linear trend variable to capture some secular changes in diversion practices over time; see

§1.6. Collectively, we denote these by Tk for ambulance k.

Patient characteristics (P): Patient’s clinical characteristics can have a significant

impact on paramedics’ diversion decisions. Extremely urgent patients, for example, might

not survive the additional transport time required to divert the ambulance away from an



www.manaraa.com

33

on-diversion MAR to an off-diversion neighboring ED and, hence, such patients are less

likely to be diverted. We use vital statistics of the patients to capture this dimension and

use a binary variable SEV EREk that is set to 1 if the patient in ambulance k satisfies

any of the following: the systolic blood pressure is below 60 or above 180, the diastolic

blood pressure is below 40 or above 110, and the pulse rate is below 50 or above 100.

Further, older patients have a greater level of urgency, present higher load to the ED, and

are admitted to hospitals more frequently (Caplan et al. 2004, Aminzadeh and Dalziel

2002). Hence, we employ a binary variable ELDERLYk = 1 to denote if the age of the

patient in ambulance k is greater than or equal to 75 years of age. We collectively denote

these patient variables by Pk for ambulance k.

ED fixed effect (E): We include a fixed effect for each ED to account for various sources

of unobserved heterogeneity, e.g. internal thresholds that trigger a diversion signal or the

presence of a bed manager who coordinates the placement of patients from the ED to the

inpatient wards. In the model for diversion probability, the fixed effect corresponds to the

MAR and in the model for waiting time, it corresponds to the REC. These fixed effects

are denoted by Ek for ambulance k.

1.4.5. Model specification for probability of diversion

Using the variables defined above, we formulate the following cross-sectional Probit model

for the probability of diversion:

(1.1) Divk = Φ
(
β0 + β1MARdk + β2AFTERk + β3MARdk · AFTERk

+β4MARdk·dis1dk+β5MARdk·dis2dk+β6MARdk·dis3dk+β7Reqk+ηkEk+πkPk+τkTk
)
+εk,
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where Φ(·) represents the standard normal cumulative distribution function.

Note that coefficient β1 and β1+β3 captures the informativeness of the diversion signal,

i.e., the whether the likelihood of diverting an ambulance intended to an on-diversion

MAR is greater than an off-diversion one, pre- and post-intervention, respectively. Thus,

Hypothesis 1 corresponds to β1, β1 + β3 > 0. The sum β2 + β3 captures the effect of the

policy intervention on the likelihood of diversion from an on-diversion MAR. Improvement

in the patient flow processes by the EDs would result in β2 + β3 < 0 (Hypothesis 2(A))

whereas a change in the diversion threshold by EDs would yield β2 + β3 > 0 (Hypothesis

2(B)). The coefficient β2 captures the change, pre- vs. post-intervention, in the diversion

probability from an off-diversion MAR. Hypothesis 3 corresponds to β2 = 0. Finally,

coefficient β3 captures the change in the strength of the diversion signal from pre- to

post-intervention. Hypothesis 4(A) implies β3 < 0 whereas 4(B) implies β3 > 0.

1.4.6. Model specification for ambulance waiting time

Next, we build an empirical specification for the time ambulances wait to offload their

patients. As ALS ambulances receive the highest priority in the ED, a non-negligible

fraction of these (roughly 5%) have zero delay. To handle this “zero-inflated” data, we

use a two-part model (Duan et al. 1984). The first part is a Probit model that predicts

whether an ambulance will experience delay (non-zero waiting time at the ED) and the

second part is an OLS model that estimates the expected waiting time conditional on the

ambulance being delayed. More formally, we sequentially estimate the following pair of

equations:
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(1.2) P(Waitk > 0) = Φ
(
α0 + α1RECdk + α2AFTERk + α3RECdk · AFTERk + α4Reqk

+ α5Divk + ηkEk + πkPk + τkTk
)

+ ζk,

(1.3) Waitk|Waitk > 0 = γ0 + γ1RECdk + γ2AFTERk + γ3RECdk · AFTERk + γ4Reqk

+ γ5Divk + ηkEk + πkPk + τkTk + ξk,

where error terms ζk and ξk are uncorrelated. We explicitly test the validity of this

assumption in the error structure in our empirical analysis.

The coefficients α1 and γ1 capture the impact of the REC’s diversion status on the

ambulance waiting time pre-intervention whereas α1 +α3 and γ1 +γ3 capture that impact

post-intervention. According to Hypothesis 5, we expect α1, γ1 < 0 and α1+α3, γ1+γ3 < 0.

Similarly, coefficients α2 + α3 and γ2 + γ3 denote the effect of policy intervention on

the waiting times during on-diversion periods. Hypothesis 6(A) and Hypothesis 6(B)

correspond to γ2 + γ3, α2 + α3 > 0 and γ2 + γ3, α2 + α3 < 0, respectively.

1.5. Results

1.5.1. Probability of diversion

Table 1.2 displays the results for the Probit model that estimates the probability of

diverting an incident ambulance (1.1). Since patient related variables are not available in

our dataset for calendar years 2007 and 2008, we run two distinct specifications of this

model. In specification (1), we omit the patient controls (severity and age) which allows us

to use the entire dataset from January 2003 through December 2009. In specification (2)
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Table 1.2. Probit model for estimating the likelihood of diverting an ambulance

(1) (2)

Intercept -1.17∗∗∗ -1.00∗∗∗

(0.07) (0.08)

MARd (β1) 1.87∗∗∗ 1.89∗∗∗

(0.04) (0.04)

AFTER (β2) 0.03 0.03
(0.05) (0.05)

MARd · AFTER (β3) -0.14∗∗∗ -0.13∗

(0.05) (0.07)

MARd+MARd · AFTER (β1 + β3) 1.73∗∗∗ 1.77∗∗∗

(0.04) (0.06)

AFTER +MARd · AFTER (β2 + β3) -0.11∗ -0.09
(0.06) (0.08)

MARd · dis1d (β4) -0.34∗∗∗ -0.34∗∗∗

(0.04) (0.04)

MARd · dis2d (β5) -0.37∗∗∗ -0.37∗∗∗

(0.04) (0.04)

MARd · dis3d (β6) -0.12∗∗∗ -0.12∗∗∗

(0.04) (0.04)

Request (β7) 2.77∗∗∗ 2.89∗∗∗

(0.04) (0.05)

Year Yes Yes

Month Yes Yes

Time of day Yes Yes

Day of week Yes Yes

Patient controls No Yes

MAR FE Yes Yes

Time Period 03 - 09 03-06, 09

N 46842 34021

Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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we include patient controls and hence drop the observations for the years 2007 and 2008.

The number of observations for the two specifications are 46842 and 34021 respectively.

Note that the coefficient estimates are robust to these changes in the specification.

Both pre- and post-intervention, the probability of diversion is higher when the MAR is

on-diversion (and neighboring EDs are off-diversion) relative to when it is off diversion

(β1 > 0 and β1 + β3 > 0). This supports Hypothesis 1 that the diversion signal is

informative to the paramedics. Also, β2+β3 < 0, which lends support to Hypothesis 2(A)

that EDs improved patient flow processes in response to the policy intervention and the

paramedics responded by reducing the likelihood of diversion from an on-diversion MAR

whose neighboring EDs are off-diversion. The fact that β2 is statistically insignificant

supports Hypothesis 3 that the probability of diversion during an off-diversion status did

not change following the policy intervention. Finally, β3 < 0 supports Hypothesis 4(A),

i.e., that the difference in likelihood of diversion between on-diversion and off-diversion

periods reduced after the policy intervention. In other words, the strength of the diversion

signal reduced post-intervention.

We also note that the coefficient β4, β5 and β6 are negative and statistically significant.

In other words, an ambulance is less likely to be diverted from an on-diversion MAR if its

neighboring EDs are also on-diversion. Thus, these coefficients provide empirical evidence

for the network effect that has been discussed in both the emergency medicine (Sun et al.

2006, McCarthy et al. 2007) and the operations management literature (Allon et al. 2013).
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Table 1.3. Two-part model for estimating the ambulance waiting time to
offload patients

Probit OLS

Intercept 1.76∗∗∗ 13.34∗∗∗

(0.13) (0.57)

RECd (α1, γ1) -0.32∗∗∗ -1.66∗∗∗

(0.06) (0.28)

AFTER (α2, γ2) 0.26∗∗∗ 0.52
0.08 0.34

RECd · AFTER (α3, γ3) -0.18 1.93∗∗

(0.14) (0.79)

RECd+RECd · AFTER (α1+α3, γ1+γ3) -0.50∗∗∗ 0.27
(0.13) (0.74)

AFTER +RECd · AFTER (α2+α3, γ2+γ3) 0.08 2.46∗∗∗

(0.15) (0.84)

Request (α4, γ4) 0.03 0.31
(0.10) (0.39)

Diverted (α5, γ5) 0.17∗∗ 0.29
(0.06) (0.24)

Year Yes Yes

Month Yes Yes

Time of day Yes Yes

Day of week Yes Yes

Patient controls Yes Yes

REC FE Yes Yes

Time Period 03 - 06, 09 03-06, 09

N 24540 23441

Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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1.5.2. Waiting time of ambulances

Table 1.3 includes the results for the two-part model that predicts the time an ambulance

waits to offload its patient. Based on the coefficients of RECd (γ1, α1), we conclude

that ambulances are less likely to wait at their receiving ED pre-intervention (α1 < 0)

and their expected waiting time conditional on having to wait is lower (γ1 < 0) during

an on-diversion period compared to an off-diversion period. The coefficient of RECd +

RECd · AFTER in the Probit model (α1 + α3 < 0) suggests that ambulances are less

likely to wait during on-diversion periods post-intervention. However, the corresponding

coefficient in the OLS model (γ1 + γ3) is not significant. Together, these provide support

for Hypothesis 5. Further, γ2 + γ3 > 0 implies that, conditional on delay, ambulances

wait longer during an on-diversion period post-intervention. Finally, α2 + α3 is positive

but statistically insignificant suggesting no change in the probability of delay during on-

diversion periods post-intervention. Thus, we find partial support for Hypothesis 6(A)

but not for Hypothesis 6(B). In other words, the increased arrival rate of ambulances

during on-diversion periods post-intervention seems to have more than compensated for

the increased service rate (improved patient flow processes) resulting in longer ambulance

waiting time at the receiving ED.

1.5.3. Overall effect of the policy intervention

In this section, we use our empirical results to deconstruct the overall effect of the policy

intervention on the probability of diversion and on the ambulance waiting time as reflected

in the descriptive statistics (Table 1.1).
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First, a reduction in time on diversion had a direct impact in reducing the probability

of diversion. Second, the mechanism which facilitated this reduction, the improvement in

the EDs’ patient flow processes, had an indirect reinforcing effect in reducing the diversion

probability. In particular, because the paramedics correctly interpreted that the diversion

signal was weaker post-intervention, they further reduced the probability of diversion

conditional on the on-diversion status of the MAR. However, the network dynamics had

an opposing effect on probability of diversion. Reduction in time on diversion at each

ED also reduced the likelihood of multiple EDs simultaneously being on diversion. As

a result, the All on Diversion, None on Diversion (ADND) policy described earlier was

applied less frequently, which actually led to an increase in the probability of diversion.

We can infer that the second effect dominated the first one resulting in a net increase in

the probability of diverting an ambulance from an on-diversion MAR post-intervention as

reported in Table 1.1. Note that this effect is actually opposite of the intended effect of the

policy intervention, which was to reduce the probability of diversion through a reduction

in ED time on diversion. As a result, the net efficacy of the policy intervention in reducing

diverted ambulances was lower than its efficacy in reducing ED time on diversion (8.2%

vs. 68.2% as seen in Table 1.1).

The other impact of the policy intervention was on the time ambulances wait to offload

patients. While one intuitively expects a reduction in this delay time post-intervention,

our empirical results reveal a more complex picture. Because of the improvement in

patient flow processes by EDs, diversion periods attracted more ambulance arrivals post-

intervention compared to pre-intervention. This resulted in an 6.3% increase in ambulance

waiting time during on-diversion episodes at the REC. As a result, despite a reduction
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in time on diversion across the network, the net reduction in average waiting time was

only 2%. We believe that this mechanism provides a partial explanation for contradictory

evidence on changes in ambulance waiting times found in prior studies based on monthly

averages (Asamoah et al. 2008, Burke et al. 2013).

1.6. Robustness Checks

1.6.1. Model choice

In our econometric specification, the identification of the intervention’s effect occurs purely

through time using a binary variable AFTER, which indicates periods that are before

and after April 1st, 2006. To ascertain that we do not attribute the effects of exogenous

temporal trends to the policy intervention, we run several alternative specifications of

the base model as reported in column (1) of Table 1.2. The results of the alternative

specifications are reported in Table 1.4.

First, we estimate the model after removing one month of data before and after the

effective date of the policy intervention, i.e., March and April 2006 to minimize the effect of

any changes that EDs might have made in anticipation of the intervention and to account

for the gradual ramp up in their responses following the intervention (Burke et al. 2013).

Second, we replace the year fixed effect with a linear trend variable, Trend that counts

the number of months elapsed since January 2003, which is the first month of observation

in the dataset. These two specifications are displayed in columns (1) and (2) of Table

1.4. We find that the coefficient estimates for both specifications are very similar to those

in Table 1.2. In column (2), we further find that the trend is positive and significant

indicating that the probability of an ambulance being diverted is increasing over time
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Table 1.4. Robustness checks: Probit models for estimating the likelihood
of diverting an ambulance

(1) (2) (3)

Intercept -1.17∗∗∗ -1.23∗∗∗ -1.18∗∗∗

(0.08) (0.06) (0.08)

MARd (β1) 1.87∗∗∗ 1.87∗∗∗ 1.87∗∗∗

(0.04) (0.04) (0.04)

AFTER (β2) 0.02 0.02 0.03
(0.06) (0.03) (0.05)

MARd · AFTER (β3) -0.16∗∗∗ -0.15∗∗∗ -0.12∗∗

(0.05) (0.05) (0.05)

MARd+MARd · AFTER (β1 + β3) 1.71∗∗∗ 1.72∗∗∗ 1.75∗∗∗

(0.04) (0.04) (0.04)

AFTER +MARd · AFTER (β2 + β3) -0.14∗∗ -0.12∗∗ -0.09
(0.07) (0.05) (0.06)

MARd · dis1d (β4) -0.34∗∗∗ -0.34∗∗∗ -0.36∗∗∗

(0.04) (0.04) (0.04)

MARd · dis2d (β5) -0.38∗∗∗ -0.37∗∗∗ -0.37∗∗∗

(0.04) (0.04) (0.04)

MARd · dis3d (β6) -0.12∗∗∗ -0.12∗∗∗ -0.12∗∗∗

(0.04) (0.04) (0.04)

Request (β7) 2.76∗∗∗ 2.77∗∗∗ 2.84∗∗∗

(0.04) (0.04) (0.04)

Trend 0.0025∗∗∗

(0.0006)

Year Yes No Yes

Month Yes Yes Yes

Time of day Yes Yes Yes

Day of week Yes Yes Yes

Patient controls No No No

MAR FE Yes Yes Yes

Time period 03 - Feb 06, May 06 - 09 03 - 09 Apr 03 - Mar 09

N 45566 46842 41055

Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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irrespective of the intervention. The national increase in the number of ED visits and ED

occupancy may be a driver for this trend (Pitts et al. 2012). In column (3), we revisit

the base model but use data from 36 months before and after the policy intervention,

i.e., April 2003 through March 2009 instead of including the calendar years January 2003

through December 2009. Again, the coefficient estimates are almost unchanged except

for the coefficient of AFTER + MARd · AFTER (β2 + β3), which reduces slightly in

magnitude. However, there is also an increase in the standard error because of a lower

sample size thereby resulting in a loss of statistical significance (p-value = 0.17).

Next, we test the robustness of the network effect. Our base model includes separate

interaction terms between the diversion status of the MAR and that of each neighboring

ED. However, it does not effectively capture the ADND policy, which applies when several

neighboring EDs are simultaneously on diversion. To accommodate the simultaneity

condition, we add a binary variable MARd · dis1d · dis2d to the base model that is set

to 1 if the MAR and two nearest EDs to the MAR were on diversion simultaneously at

the ambulance’s incident time. We find this term to be significant and negative. In this

expanded model the (separate) coefficients of each of the first two nearest EDs, MARd ·

dis1d and MARd·dis2d remain negative and statistically significant. All other coefficients

are robust to this change in the specification. We also test whether the magnitude of the

network effect changes after the policy intervention by interacting the binary variable

AFTER with the diversion statuses of the neighboring EDs MARd ·dis1d, MARd ·dis2d,

MARd · dis3d in the base model. All three interaction terms are insignificant at the

10% level which indicates that the policy intervention did not affect the magnitude of the

network effect. We do not include the details of these results for brevity.
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Table 1.5. Robustness checks: Probit models for estimating the likelihood
of ambulance waiting time being greater than a threshold

Threshold 20 minutes 15 minutes 10 minutes

Intercept -1.32∗∗∗ -0.37∗∗∗ 0.46∗∗∗

(0.08) (0.07) (0.08)

RECd -0.08∗∗ -0.26∗∗∗ -0.50∗∗∗

(0.04) (0.04) (0.04)

AFTER 0.05 0.029 0.15∗∗∗

(0.05) (0.04) (0.05)

RECd · AFTER 0.04 0.15 0.16
(0.11) (0.10) (0.10)

RECd+RECd · AFTER -0.04 -0.11 -0.34∗∗∗

(0.10) (0.09) (0.12)

AFTER +RECd · AFTER 0.09 0.18† 0.31∗∗∗

(0.13) (0.11) (0.09)

Request 0.07 0.049 0.06
(0.06) (0.05) (0.06)

Diverted 0.02 0.06∗ 0.07∗∗

(0.03) (0.03) (0.03)

Year Yes Yes Yes

Month Yes Yes Yes

Time of day Yes Yes Yes

Day of week Yes Yes Yes

Patient controls Yes Yes Yes

REC FE Yes Yes Yes

Time Period 03 - 06, 09 03-06, 09 03 - 06, 09

N 24540 24540 24540

Robust standard errors in parentheses
† p < 0.12, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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To side-step the problem of zero-inflated waiting time data, which necessitates a two-

part model, we consider Probit models for the likelihood that the ambulance waiting time

is greater than a certain target. We estimate three variants of this model with targets of

10, 15 and 20 minutes based on what is considered as acceptable in our setting (Eckstein

and Chan 2004). Table 1.5 shows that our qualitative insights are virtually unchanged

across all three specifications as indicated by the negative significant coefficients of RECd

and positive significant coefficients of AFTER + RECd · AFTER. The coefficients are,

however, smaller in absolute magnitude and less significant for the target of 20 minutes

compared to 10 and 15 minutes. This suggests that the distribution of ambulance waiting

times shifted post-intervention so that ambulances are less likely to experience shorter

waits during on-diversion periods.

1.6.2. Exogeneity of the diversion signal

In practice, it is possible that paramedics are privy to crowding information through

informal communication with the ED staff or based on recent ambulance transports, which

is not observable to us as researchers. This additional information is likely to be correlated

with the diversion signal as well as the paramedics’ decision to divert or not thereby

making the coefficients of the MAR diversion status variable MARd and its interactions

with the intervention indicator AFTER and diversion status of the neighboring EDs

(dis1d, dis2d, dis3d) biased.

We test for potential endogeneity by following the two-stage approach proposed in

Smith and Blundell (1986). In the first stage, we fit linear probability models (See

Wooldridge (2012) for the appropriateness of this approach for Probit models) with each
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of the five suspected discrete regressors as the dependent variable and all other exoge-

nous regressors in the main equation as the independent variables along with a set of

instrumental variables. As a basis of instrumental variables, we construct lagged diver-

sion status variables (L.MARd, L.dis1d, L.dis2d, L.dis3d) using the fraction of time

spent by the MAR and three nearest EDs to the MAR on-diversion during the same hour

and day as the focal ambulance’s incidence time (say Monday, 10:00-11:00) one week

ago and on average over the previous four weeks. We then construct eight instrumental

variables: L.MARd, L.dis1d, L.dis2d, L.dis3d, L.MARd · AFTER, L.MARd · L.dis1d,

L.MARd ·L.dis2d, L.MARd ·L.dis3d. These instruments are likely to be correlated with

the suspected endogenous variables but not with the diversion decision pertaining to the

focal ambulance. We obtain the residuals from these first stage models and include them

in the second stage Probit model for the diversion probability in addition to the origi-

nal regressors. We do not find the residuals to be jointly statistically significant at the

10% level (p-value of 0.2436 for one week instruments and 0.1286 for four week average

instruments) and hence cannot reject the null hypothesis that the suspected variables are

exogenous (Baum 2007, Wooldridge 2012).

Using simulated likelihood to estimate a multivariate Probit model comprising system

of six equations—one for diversion probability and five additional equations each for one of

the suspected discrete regressors (MARd, MARd·AFTER, MARd·dis1d, MARd·dis2d,

MARd · dis3d)–is computationally intractable (Cappellari and Jenkins 2003). However,

we obtain estimates for five separate bivariate Probit models, where the main diversion

probability equation is paired with each of the suspected discrete endogenous variable

equations. Statistically insignificant correlation between the error terms in these models
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(p-value > 10%) provides further evidence that diversion status and its interactions are

not endogenous.

1.7. Conclusion and Future Research

In this paper, we studied the mechanisms underlying ambulance diversion in a net-

work of EDs and their role in determining the outcomes of a community-wide policy

intervention. In particular, we developed a conceptual model of signaling in queues for

the strategic interaction between EDs, who signal their level of crowding through the

diversion signal, and paramedics, who decide whether to comply with that signal or not.

We employ this framework to understand the impact on key operational measures–time

on diversion, probability of diverting an ambulance and ambulance waiting time–of a

community-wide diversion-policy intervention in LA County aimed at reducing the ex-

tent of ambulance diversion.

Our results suggest that EDs improved their patient flow processes to comply with

the restrictions on the usage of ambulance diversion imposed by the new policy. On

one hand, paramedics interpreted this change in equilibrium and responded by reducing

the likelihood of diverting an ambulance from an on-diversion ED, which increased the

effectiveness of the intervention. On the other hand, the reduced likelihood of multiple

EDs being simultaneously on diversion led to paramedics’ increasing the probability of

diverting an ambulance from an on-diversion ED, which reduced the effectiveness of the

intervention. The net effect of these mechanisms was that, while time-on-diversion reduced

significantly after the policy intervention, the reduction in the fraction of ambulances

diverted was much smaller. Similarly, increased arrival rate during on-diversion periods
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post-intervention more than outweighed the benefit of improved patient flow processes

and effectively increased the offload time of ambulances during those periods.

Our empirical approach and results provide indirect evidence regarding the effective-

ness of a relatively simple policy intervention–one that restricts time on diversion at

EDs–in inducing process improvement. At the same time, it urges the relevant decision

makers to be cautious in choosing appropriate performance measures to evaluate the ef-

fectiveness of the policy intervention. Focusing only on the reduction in time on diversion

overestimates its effectiveness and overlooks the limited impact it had on other, clinically

more relevant, operational measures such as the fraction of ambulances diverted and the

ambulances’ waiting times.

Our empirical setting and the challenges it presents provide a strong motivation for

extending existing work on strategic delay announcement to a network of servers. In such

a model the servers strategically decide on the delay signal based on their own congestion

level and the anticipated congestion level of the other server. Customers decide which

server to join based on the (vector of) signals and their decisions, in turn, impact the

congestion level at the two servers.

In the specific context of ambulance diversion, our work underscores the importance

of modeling paramedics (and not just EDs) as decision makers that need not comply with

the diversion signal. For instance, analytical work on ambulance diversion suggests coor-

dinated policies to reduce the inefficiency of decentralized diversion (e.g. Deo and Gurvich

2011, Do and Shunko 2013) and benchmarks them against an idealized network where a

central controller can optimize the routing of ambulances. Our results highlight the need

to re-evaluate the effectiveness of such regulations after incorporating the response of the
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paramedics and the mechanisms through which they update their interpretation of the

diversion signals.
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CHAPTER 2

Effectiveness of Hospital Readmissions Reduction Program:

Are Hospitals Incentivized To Reduce Readmissions?

(joint with Itai Gurvich, Jan A. Van Mieghem, Mark V.

Williams, Robert S. Young, and Dennis Zhang)

Abstract

The Affordable Care Acts Hospital Readmissions Reduction Program (HRRP) pe-

nalizes hospitals with high excess readmission rates among Medicare beneficiaries. The

program intends to motivate hospitals to reduce readmissions by providing financial in-

centives. Hospitals that elect to reduce readmissions may lessen the penalty incurred but

at the same time will decrease revenue from patient admissions as they lose patient vol-

ume. To this end, how hospitals should respond to the program from a purely financial

perspective is not clear. We analyze the hospitals financial incentive to reduce readmis-

sions and forecast the effectiveness of the HRRP. We model hospitals as forward-looking

net income maximizers and link their operational parameters to financials. Our financial

model suggests that hospitals may or may not be incentivized to reduce readmissions by

the HRRP. A hospital is financially incentivized to reduce readmissions only if its current

readmission rate falls into a window of readmission rate that is unique to each hospital

and depends on its own patient mix and characteristics. In a simulation of our framework
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with a sample of 183 hospitals in California, 61.2 percent of the hospitals are incentivized

to reduce while 5.5 percent are not incentivized despite incurring penalty. Patients un-

der the worst quality of care may be more vulnerable as the program fails to incentivize

hospitals that perform far worse than the target the program sets, the worst performers.

The program also fails to incentivize those with small fraction of revenue contributed by

Medicare beneficiaries and small fraction of Medicare revenue contributed by the three

penalty applied conditions.

2.1. Introduction

Since October 1st, 2012 , hospitals with excessive 30 day readmissions for acute my-

ocardial infarction (AMI), pneumonia (PN), and heart failure (HF) have been penalized

under the Hospital Readmissions Reduction Program (HRRP) as mandated by the Af-

fordable Care Act (ACA). Medicare has indicated that they view hospital readmissions

as potential adverse events and a financial burden on the health care system, with nearly

20% of Medicare beneficiaries in 2003-2004 readmitted within 30 days of discharge at

an estimated cost of $17 billion. The HRRP incentivizes hospitals to embrace efforts to

reduce readmissions through improving patient care quality and transitions (Jencks et al.

2009, CMS et al. 2012).

In general, the HRRP penalizes excessive readmissions by adjusting all Medicare pay-

ments for target conditions to a hospital based on a ratio of excess readmissions for

patients initially admitted for care of the target conditions. The data for the excessive

readmissions is recorded in a 3 year window and then applied to the next fiscal year (FY)

beginning 18 months after the data time period. The Excess Readmission Ratio is a
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measure of a hospitals performance (Risk-adjusted Predicted Readmissions) compared to

the national average for the hospitals set of patients with these conditions (Risk-adjusted

Expected Readmissions) (CMS 2013). Since hospitals are compared to their peers under

the HRRP, this competitive aspect of the penalty structure induces hospitals to consider

others readmissions reduction decision in their own readmission reduction decision. In

FY 2013, more than 2,200 hospitals were penalized approximately $280 million for excess

readmissions (Rau 2012). In FY 2014, a similar number of hospitals were penalized for

excess readmissions, with a total penalty of $227 million (Rau 2013).

Despite these penalties, hospitals with excess readmissions, on the other hand, also

face the financial disincentive of reducing readmissions from a hospital patient volume

standpoint. With the high proportions of patients being readmitted, these readmissions

constitute a significant amount of Medicare revenue to these hospitals (Berenson et al.

2012). Thus hospitals are caught in the dilemma of avoiding the readmissions penalty at

the cost of reducing hospital volume and associated revenue from these readmissions. In

addition, there are concerns that this financial dilemma disproportionately affects safety

net hospitals and those that serve low-income populations who lack the financial resources

to adjust to the HRRP requirements (Joynt and Jha 2011, 2012).

The objective of this analysis is to examine, through financial modeling, the financial

incentives of hospitals to engage in readmissions reduction efforts, considering both the

HRRP penalty and the potential of loss of revenue from lower hospital patient volume.

Specifically, we model hospitals as net income maximizers and link operational parame-

ters to hospital financials. We incorporate the HRRP penalty structure into the hospitals

revenue in a game theoretic framework that allows us to take into account the effect
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of other hospitals readmissions reduction decisions, as manifest in the risk-adjusted Ex-

pected Readmissions metric, on a hospitals financials and eventually its decision to reduce

readmissions. We examine the emerging equilibrium outcome between hospital decisions

and analyze the implications in the effectiveness of the program.

We apply our framework to a sample of 183 California hospitals and simulate the

hospitals readmission reduction decision to forecast the effectiveness of HRRP in induc-

ing hospitals to reduce readmission. We also perform sensitivity analysis on the fiscal

maximum penalty cap limit and number of penalty applied conditions.

2.2. Methods

2.2.1. HRRP Penalty Structure

According to the HRRP guideline, a hospitals excess readmissions penalty in a given fiscal

year is assessed by the readmission performance of the three applicable conditions during a

3 year period lagged by 18 months from the applied fiscal year. For example, penalty in FY

2013 is assessed by performance measured between July 2008 and June 2011. The penalty

calculation is based on a risk-adjusted performance metric for each condition known as the

Excess Readmission Ratio which is equal to Risk-adjusted Predicted Readmissions divided

by Risk-adjusted Expected Readmissions. In order to adjust for hospital specific risk

factors, the two readmissions measures are estimated from a hierarchical logistic regression

model using national level discharge data which covers all discharges from hospitals subject

to the HRRP. Risk-adjusted Predicted Readmissions can be viewed as the hospitals actual

readmissions performance measure after adjusting for the patient risk factors, while Risk-

adjusted Expected Readmissions represents the benchmark performance measure to which
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the hospitals Risk-adjusted Predicted Readmissions rate is compared to. Risk-adjusted

Expected Readmissions is an estimation of readmission performance of a national average

hospital subject to the HRRP with the same patient risk factors as the evaluated hospital

(CMSc).

If a conditions Excess Readmission Ratio exceeds 1, which means the predicted perfor-

mance exceeds (is worse than) the benchmark performance, the hospital incurs a financial

penalty proportional to the level of excessiveness (Excess Readmission Ratio − 1) mul-

tiplied by the Centers for Medicare & Medicaid Services (CMS) payment for Medicare

patients diagnosed with the condition. The total penalty levied to the hospital is the sum

of the penalty for the three index conditions. However, the total readmissions penalty

has a maximum (equal to 1 Floor Adjustment Factor), which is equal to a predetermined

percentage of all Medicare payments the hospital receives for treatment of all conditions.

Under the current structure, this penalty cap increases from 1 percent in FY 2013 to 2

percent in FY 2014 and 3 percent in FY 2015 (CMS 2013).

2.2.2. Financial Model

We developed a financial model which represents patient admission related net income

of a HRRP-enrolled hospital as a function of its readmission performance. We define

net income as inpatient profit minus the HRRP penalty. Inpatient profit captures the

hospitals profitability driven only by its operations which excludes external costs such

as the HRRP penalty and is defined as inpatient revenue minus the operating expenses

associated with admitted patients.
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Figure 2.1. Patient flow process

First, using operations management modeling techniques, we model a hospitals inpa-

tient admissions and discharges as a flow process and capture readmissions back to the

hospital as a feedback loop with constant return rate r (Figure 2.1). In our model, r is

represented by the Risk-adjusted Predicted Readmissions of the HRRP measures. From

the model, we can express the hospitals patient volume as the following:

Patient Volume = Index Admission Rate · 1

1− r

(2.1)

= Index Admission Rate · 1

1− Risk-adjusted Predicted Readmissions
.

Index Admission Rate is the rate of index admission patients arriving to the hospital.

The 1
1−r term captures the nonlinear relationship between readmission rate and overall

patient volume.
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Next, we link the hospitals admission performance to its financials. We assume hos-

pitals to receive a constant average payment for each inpatient admission from all payers

(CMS, private insurers, self-paying patients or others). Within our model we aggregate

the three HRRP applicable conditions into a single group and all other non-applicable

conditions into another single group. This reduces the complexity of the penalty struc-

ture in the analysis and allows us to provide a clearer picture of the tradeoffs in reducing

readmissions and insight of the individual hospitals financial incentive. We also assume

that if the hospital decides to reduce readmissions, the rate of reduction in readmissions

is constant through all condition types. In addition, we assume that admitted patients,

regardless of their admission status, i.e., index admission or readmission, have the same

profitability at the hospital level by assuming a constant operating margin, which is the

ratio of the hospital level inpatient profit over inpatient revenue. Later in the simula-

tion section, we perform a sensitivity analysis on patient profitability. These assumptions

allow us to link a hospitals inpatient profit with its patient volume as following (CMS

2013):

Inpatient Profit = Inpatient Revenue− Inpatient Operating Expenses

(2.2)

= Patient Volume · (Revenue per Patient−Operating Expenses per Patient)

= Patient Volume · Profitability per Patient

= (Index Admission Rate · 1

1− Risk-adjusted Predicted Readmissions
)

· (Average Inpatient Revenue per Admission ·Operating Margin).
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We then explicitly model the HRRP penalty structure, reflecting the Floor Adjustment

Factor and Risk-adjusted Expected Readmissions, and incorporate the penalty into the

net income calculation as following:

HRRP Penalty = min[Medicare Inpatient Revenue · (1− Floor Adjustment Factor),

(2.3)

Medicare Inpatient Revenue from Applicable Conditions

·max(
Risk-adjusted Predicted Readmissions

Risk-adjusted Expected Readmissions
− 1, 0)]

= Inpatient Revenue · Fraction of Inp Rev Generated from Medicare Beneficiaries

·min[(1− Floor Adjustment Factor),

Fraction of Medicare Inp Rev Generated from Applicable Conditions

·max(
Risk-adjusted Predicted Readmissions

Risk-adjusted Expected Readmissions
− 1, 0)].

Finally, net income is inpatient profit minus the HRRP penalty. Since we can express

inpatient revenue as

Inpatient Revenue = Patient Volume · Revenue per Patient

(2.4)

= (Index Admission Rate · 1

1− Risk-adjusted Predicted Readmissions
)

· Average Inpatient Revenue per Admission,
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we can substitute it into the HRRP penalty equation and express net income as

Net Income = Inpatient Profit− HRRP Penalty

(2.5)

= Index Admission Rate · 1

1− Risk-adjusted Predicted Readmissions

· Average Inpatient Revenue per Admission

· (Operating Margin− Fraction of Inp Rev Generated from Medicare Beneficiaries

·min[(1− Floor Adjustment Factor),

Fraction of Medicare Inp Rev Generated from Applicable Conditions

·max(
Risk-adjusted Predicted Readmissions

Risk-adjusted Expected Readmissions
− 1, 0)]).

The financial model captures the two opposing effects of reducing readmission rates

(Risk-adjusted Predicted Readmissions) on hospital net income: inpatient profit loss due

to less patients and penalty savings due to improved readmission performance measure.

Using the framework we first predict individual hospital’s incentive compatibility with

the HRRP penalty.

It is important to note that we take a purely financial perspective in analyzing the

effectiveness of the HRRP. We do not consider additional benefits of reducing readmission

rate that are difficult to monetize, such as higher quality of service measures and better

reputation. For example, a hospital may have a strategic advantage over competitors if

its readmission rates are lower than the competitors and can take advantage in marketing



www.manaraa.com

59

practices. As the information on readmissions performance measures is publicly available,

patients or their referring doctors may use readmission data in reference to choosing

hospitals.

2.2.3. Strategic Hospital Decisions: Game Theoretic Perspective

Hospitals subject to the HRRP will weigh the two opposing effects of reducing readmis-

sions on their financials and decide whether to and if so how much to reduce readmissions

depending on the more dominant effect between the two. In the decision of reducing

readmissions, hospitals are strategic in a game-theoretic perspective as they anticipate

the effect of other hospitals readmissions reduction decision on their own net income.

The HRRP penalty structure adopts a relative performance measure by comparing a

hospitals readmission performance to its peers in the program. Due to the national level

discharge data pool and three year rolling structure, readmissions reduction actions taken

by other hospitals will affect a hospitals benchmark performance measure, Risk-adjusted

Expected Readmissions, in future years. Both Risk-adjusted Expected and Predicted

Readmissions are publicly reported for all hospitals subject to the HRRP. A hospital can

anticipate how other hospitals will react to the reported performance measures and fore-

cast the impact of others reaction to its own future Risk-adjusted Expected Readmissions.

Thus the action of reducing readmissions affects the hospitals own net income not only

through the aforementioned two opposing effects but also through its own Risk-adjusted

Expected Readmissions as it depends on the other hospitals reaction to the hospitals

action of reducing readmissions. This requires a game-theoretic analysis that takes the
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decision of other hospitals into account in a hospitals optimal readmissions reduction

decision.

In the financial model, we capture the action-reaction setting between hospitals through

the mechanism of updating the Risk-adjusted Expected Readmissions. If a hospital re-

duces readmissions, the impact is reflected not only in its own but also in all other hospitals

future Risk-adjusted Expected Readmissions. We follow the three year rolling perfor-

mance measuring period and properly adjust the approximated Risk-adjusted Expected

Readmissions in future years according to hospitals decisions.

Each hospital subject to the HRRP is maximizing its own net income conditional on

others readmission reduction decision. Since all hospitals are deciding its own readmissions

reduction simultaneously, they anticipate their peers decision when making their own.

Given the anticipated peers decision each hospital will make an optimal decision where

they achieve the maximum net income. As each and every hospital subject to the HRRP

may correctly anticipate their peers decision (action) and decide in their own best interest

(reaction), hospitals will reach equilibrium in their decisions.

Under the decisions made in equilibrium, in order to guarantee no hospital deviates

from that decision, each and every hospital is better or at least as good as in their objective

than in any other possible decision. Therefore, in the simulation analysis, we consider

all combinations of possible decisions by the participating hospitals and compute the

corresponding hospitals net incomes and identify the equilibrium outcome. In equilibrium,

the net income a hospital achieves in its optimal decision is no less than that achieved in

other decisions.
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However, the realized equilibrium in reduction decisions is not guaranteed to be unique.

For instance, it may be optimal for a hospital to reduce readmissions in one equilibrium

while it may be better off to not reduce in another equilibrium where its peers decision are

also different. Hence, one cannot predict whether a hospital will always be incentivized to

reduce in all realized equilibria. Instead, we analyze the upper bound of the effectiveness

of the HRRP, i.e., analyzing whether a hospital will be incentivized to reduce readmissions

in any of the realized equilibria.

2.2.4. Simulation

In the simulation study we expand the framework to multiple hospitals subject to the

HRRP and predict the hospitals readmission reduction action and the effectiveness of

the HRRP, we model the exact penalty structure with the 18 month delay between the

performance measurement and penalty application periods. We report a hospital to be

incentivized if it has a non-zero probability of reducing readmissions in any of the re-

alized equilibria. We assume hospitals may reduce readmissions in each and every year

of the time horizon. We aggregate the readmission performances of the three applicable

conditions into a single metric for each hospital by taking the average of Risk-adjusted

Predicted (Expected) Readmissions for the three conditions weighted by their respective

number of discharges as the predicted (expected) performance metric in the simulation.

This modification implies that we assume hospitals to make a centralized decision in re-

ducing readmissions, such that the rate of readmissions reduction is constant throughout

the hospital regardless of the condition group.

We utilize three sets of data from distinct sources:
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(i) The CMS Hospital Compare hospital level readmission database, from which we

acquired the Risk-adjusted Predicted Readmissions rate, Risk-adjusted Expected

Readmissions rate and number of discharges for Medicare patients with index

admissions due to Acute Myocardial Infarction (AMI), Heart Failure (HF) and

Pneumonia (PN) diagnoses (CMSa).

(ii) The inpatient CMS Medicare Provider Utilization and Payment Data was used to

determine the fraction of Medicare revenue from the three applicable conditions

(CMS 2013).

(iii) The Office of Statewide Health Planning & Development (OSHPD) database for

the state of California. The annual inpatient revenue, inpatient profit, and Medi-

care inpatient revenue are reported in this database for 434 California hospitals

(OSHPD).

We restrict our analysis to the 183 hospitals in California for which a complete set of

data from all three sources is available

Using the framework of individual hospital’s incentive compatibility with the HRRP,

we perform simulations on the game-theoretic setting between the sample hospitals. We

consider three distinct hospital objectives that depend on patient profitability to maximize

from 2014 to 2020 with a discount factor of 0.99: net income with operating margin

(inpatient profit HRRP penalty), net income with patient margin (inpatient profit only

from patient treatment activity - HRRP penalty), and net revenue (inpatient revenue

HRRP penalty).

From a researcher’s perspective, profitability of an admitted patient which is cap-

tured by operating margin in Equation (2.5) is difficult to accurately measure. Also
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hospitals may have different criteria in viewing patient profitability. As a sensitivity

analysis, we examine three profitability measures that hospitals might use from least

to most profitable: operating margin, patient margin, and net revenue. Within the

available hospital income statement from the OSHPD database, we use Patient Mar-

gin (= Net Patient Revenue−Patient Expenses
Inpatient Revenue

) as an alternative measure of patient profitability to

Operating Margin (= Inpatient Revenue−Inpatient Operating Expenses
Inpatient Revenue

). Net patient revenue, which is

the sum of gross patient revenue (sum of daily hospital, ambulatory, ancillary service pa-

tient revenue) and capitation premium revenue less deductions from revenue, and patient

expenses, which is the sum of hospital, ambulatory, ancillary services operating expenses,

only take operations from patient care services into consideration. On the other hand, in-

patient revenue and inpatient operating expenses take both patient care services related

and non-related health care operations into account. Examples for the latter include

non-patient food sales, refunds and rebates, supplies sold to non-patients, and Medical

Records abstract sales.

In the individual hospital’s incentive compatibility analysis, we find that a hospitals

optimal decision in each fiscal year is reduced to a binary choice: either completely avoid-

ing the penalty (0) or incurring the penalty while maintaining a readmission rate above

the higher range of the incentive-compatible region (1). This allows us to model the

decision of a hospital maximizing net income over a long horizon as a vector of binary

decisions for each fiscal year. For instance, a hospital with a 3 year time horizon has a

total of 8 (= 23) possible decisions: (0, 0, 0), (1, 0, 0), (0,1,0), (0,0,1), (1,0,1), (1,1,0),

(0,1,1), (1,1,1). For a 7 year time horizon, there are 128 possible decisions.
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2.3. Results

Table 2.1 summarizes descriptive statistics for the sample data. Predicted and Ex-

pected Readmission Rates are the aggregated readmission performance metric for each

hospital calculated as the average of Risk-adjusted Predicted and Expected Readmissions

for the three applicable conditions weighted by their respective number of discharges.

Table 2.1. Descriptive statistics of 183 sample California hospital data, 2013

Variables Mean Std. Dev. Min. Max.

CMS Hospital Compare database, Readmission data

Predicted Readmission Rate 21.4 2.3 16.2 30.9
Expected Readmission Rate 21.6 1.5 17.1 26.5
AMI no. of discharges 158.2 115.3 25 599
AMI R-A Predicted Readmissions 20.2 3.1 12.3 35.8
AMI R-A Expected Readmissions 20.4 2.2 15.2 29.4
HF no. of discharges 364.8 209.1 31 1714
HF R-A Predicted Readmissions 24.5 2.5 18 32.2
HF R-A Expected Readmissions 24.7 1.3 20.7 28.5
PN no. of discharges 306.9 163.3 43 1146
PN R-A Predicted Readmissions 18.6 2.2 14 27.7
PN R-A Expected Readmissions 18.8 1.5 14.7 23.5

CMS Medicare provider utilization and payment data

Fraction of Medicare revenue
from 3 applicable conditions

13.3% 4.9% 3.8% 35.3%

OSHPD database, State of California

Bed utilization 59.6% 13.7% 7.5% 97.6%
Fraction of revenue from Medicare 35.9% 10.3% 7.9% 63.2%
Operating margin 3.3% 8.0% -29.1% 19.3%
Patient margin 40.0% 10.1% -52.3% 69.5%
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2.3.1. Individual Hospital Incentive Compatibility To HRRP

Using our financial model, we construct a graphical representation of the relationship

between hospital net income and readmission rate Figure 2.2. The model provides a

framework to predict whether or not a hospital is financially incentivized to reduce read-

missions in order to maximize its net income. We modeled a hypothetical hospital using

parameters derived from the average statistics from the California OSHPD and the CMS

databases found in Table 2.1: the fraction of inpatient revenue received from Medicare

beneficiaries of 35.9%, the fraction of Medicare revenue from three applicable conditions

of 13.3%, an average operating margin of 3.3%, and a Risk-adjusted Expected Readmis-

sions value of 0.216. We assume a Floor Adjustment Factor of 0.97, that is a 3 percent

penalty cap.

Figure 2.2 depicts the hypothetical hospitals normalized net income and inpatient

profit as a function of its readmission rate in a given fiscal year. The horizontal axis rep-

resents Risk-adjusted Predicted Readmissions. We normalize inpatient revenue to 1 when

there are no readmissions, i.e., the readmission rate is zero. Hence, as the operating mar-

gin is 3.3%, the inpatient profit (= Operating Margin · Inpatient Revenue) on the vertical

axis is normalized to 0.033 when the readmission rate is zero which corresponds to the

intercept of the vertical axis. Normalized inpatient profit is represented by the dash-dot

line and increases as the readmission rate increases due to its non-linear proportionality

with patient volume.

The Expected Readmission Rate value of 0.2159 is marked by the vertical dashed line

in Figure 2.2. If the hospitals readmission rate exceeds the Expected Readmissions Rate,

the hospital incurs a penalty proportional to the difference between the two rates. This is
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Figure 2.2. HRRP incentive compatibility: Average hospital

evident by the increasing gap between the inpatient profit (dash-dot line) and net income

(solid line) as the readmissions rate increases away from the Expected Readmissions Rate.

The Floor Adjustment Factor of the HRRP penalty structure forces a percentage-wise

cap on the applicable penalty regardless of the hospitals readmission rate. The 3 percent

penalty cap installed by the Floor Adjustment Factor of 0.97 is reached at the readmission

rate of 0.2646, which is the lowest point of net income. At readmission rates above 0.2646,

the HRRP penalty is capped at 3 percent of the inpatient profit (dash-dot line). Net

income in this region is at the 97 percent level of the inpatient profit, hence, increases as

the readmission rate increases. We can partition a hospitals readmission rate into three

distinctive regions by its optimal strategy under the respective readmission rate.



www.manaraa.com

67

If the hospitals performance readmission rate (Risk-adjusted Predicted Readmissions)

is within the first region, the left of the three, it is already performing below or at the

Expected Readmissions Rate, and therefore does not incur any HRRP penalty. Reducing

readmissions will result only in profit loss without any penalty savings. The optimal

strategy for the hospital is to remain at the current readmission rate. Hence, the hospital

is not incentivized to reduce readmissions. We note this region as the Indifferent Region.

The revenue achieved at any readmission rate within the second region, the middle of

the three, is not more than the revenue achieved at the Risk-adjusted Expected Readmis-

sions, 0.2159. The upper bound of the region, 0.4718, is the point where the achieved net

income is equivalent to the net income achieved at the Expected Readmissions Rate. The

optimal strategy for a hospital performing (Risk-adjusted Predicted Readmissions) within

this region is to reduce readmissions to the Expected Readmissions Rate, and generate the

maximum achievable net income among the possible options of readmission rates equal

to or below its current readmission rate. For example, a hospital currently performing at

0.4 readmission rate generates net income of 0.0371. Among readmission rates below 0.4,

the Expected Readmissions Rate, 0.2159, generates the most net income at 0.0421. For

such hospital, the penalty savings from reducing readmissions to the Expected Readmis-

sions Rate outweigh the profit loss and the hospital is incentivized to reduce. We note

this region as the Incentive Compatible Region. This is the window where the HRRP

successfully incentivizes hospitals to reduce readmissions.

Finally in the last region, the right of the three, if the hospitals performance readmis-

sion rate (Risk-adjusted Predicted Readmissions) exceeds 0.4718, reducing readmissions

leads to more profit loss than penalty savings. Hence, the hospital is not incentivized to
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reduce readmissions and the optimal strategy is to remain at the current readmissions

rate. We note this region as the Non-Incentive Compatible Region.

2.3.2. All Conditions Applied Readmissions: Incentivizing Hospitals Without

Incentive Compatible Region Under Current HRRP Structure

In the previous section, we have observed that there exists a window of readmission rates

where a hospital will be incentivized to reduce readmissions. However, the existence of

this window is not guaranteed for all hospitals. In the following example, we analyze the

hospital with the maximum operating margin in our data set which has the following

parameters: a lower fraction of inpatient revenue received from Medicare beneficiaries of

29.1% compared to the prior example; a fraction of Medicare revenue from the applicable

conditions of 9.1%, as opposed to 13.3%; a higher operating margin of 19.3%; and a slightly

lower Expected Readmissions Rate of 0.2061. The Floor Adjustment Factor (penalty cap)

remains constant at 0.97.

Figure 2.3 depicts the hospitals normalized net income and inpatient profit as a func-

tion of its readmission rate. Normalized inpatient profit and net income under the current

HRRP penalty structure are represented by the dash-dot line and solid line respectively.

In contrast to Figure 2.2, the net income at any readmission rate above the Expected

Readmissions Rate is larger than the net income achieved at the Expected Readmissions

Rate; therefore, the hospital is not incentivized to reduce readmissions over any region.

For the HRRP to successfully incentivize hospitals to reduce readmissions, the net in-

come achieved at readmission rates above the Expected Readmissions Rate should be less
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Figure 2.3. HRRP incentive compatibility: Hospital with large operating margin

than the net income achieved at the Expected Readmissions Rate. To accomplish the de-

sired income loss required for incentivization, the marginal penalty amount should exceed

the marginal inpatient profit once the hospitals readmission rate exceeds the Expected

Readmissions Rate. In the current HRRP penalty structure, as we cannot artificially in-

crease the fraction of Medicare revenue contributed by the current applied conditions by

either increasing the amount revenue paid or incidence of the conditions, the only other

option to increase the fraction of applicable Medicare revenue is increasing the number

of applicable conditions. The counterfactual condition where the HRRP penalty is ap-

plicable to all conditions is represented by the dash line in Figure 2.3. Since we do not

have the data for Expected Readmissions Rate for all conditions applied readmissions, we

assume it to be constant with that of the three applicable conditions, 0.2061. Under the
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Figure 2.4. Wider incentive compatible region: Average hospital with Floor
Adjustment Factor 0.95

all conditions applied penalty, the marginal penalty exceeds the marginal profit, thus the

net income decreases as the readmission rate increases from the Expected Readmission

Rate. In this example, the inclusion of all conditions applied to the HRRP penalty creates

an incentive compatible region of [0.2061, 0.2419].

2.3.3. Reducing Floor Adjustment Factor (Increasing Penalty Cap) Widens

The Incentive Compatible Region

The HRRP penalty has a gradually decreasing Floor Adjustment Factor and the impact

of the Floor Adjustment Factor on the hospitals incentives is of interest from a policy

makers perspective. For a hospital that has an incentive compatible region, decreasing the
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Floor Adjustment Factor will widen the region, which effectively increases the likelihood

of the hospital having its Risk-adjusted Predicted Readmissions within the region and

being incentivized to reduce. In a counterfactual analysis, we take the same hospital

from Figure 2.2 but with a 0.95 Floor Adjustment Factor instead of 0.97. In contrast

to the incentive compatible region in Figure 2.2, the region widens to (0.2159, 0.6424]

(Figure 2.4). From the program’s perspective, the wider incentive compatible region is

likely to capture more hospitals and incentivize them to reduce readmissions.

2.3.4. Simulation On The Effectiveness Of HRRP

If hospitals are maximizing operating margin net income under the current HRRP struc-

ture (Floor Adjustment Factor of 0.98 in FY 2014 and 0.97 in FY 2015 and beyond),

61.2 percent are financially incentivized to reduce readmissions while 5.5 percent are not

despite incurring penalty (Table 2.2). If we look at the hospitals specific parameters,

the hospitals that elect to not reduce are not incentivized because they lack an incentive

compatible region. This is also evident from the sensitivity analysis (Table 2.2) where we

widen the incentive compatible region by reducing the minimum Floor Adjustment Factor

(maximum penalty cap) beyond the current 0.97 (3 percent) level. For instance, when the

minimum Floor Adjustment Factor is set at 0.95, it decreases by 0.01 each year from 0.98

in FY 2014 to 0.95 in FY 2017 and remains at 0.95 afterwards. Even in the extreme case

of a minimum Floor Adjustment Factor of 0.92, these hospitals remain unincentivized.

As a solution to incentivize hospitals without an incentive compatible region under

the current structure, we analyze a penalty applied to readmissions associated with all
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Table 2.2. HRRP effectiveness simulation: Percentage of 183 sample Cali-
fornia hospitals by incentive compatibility

Net income (operating margin) maximizer

Minimum Floor
Adjustment Factor

3 applicable conditions All conditions applied

Indiff Inc Comp Non-Inc Comp Indiff Inc Comp Non-Inc Comp

0.97 33.3% 61.2% 5.5% 24.6% 75.4% 0.0%
0.96 33.3% 61.2% 5.5% 24.6% 75.4% 0.0%
0.95 33.3% 61.2% 5.5% 24.6% 75.4% 0.0%
0.94 33.3% 61.2% 5.5% 24.6% 75.4% 0.0%
0.93 33.3% 61.2% 5.5% 24.6% 75.4% 0.0%
0.92 33.3% 61.2% 5.5% 24.6% 75.4% 0.0%

Net income (patient margin) maximizer

Minimum Floor
Adjustment Factor

3 applicable conditions All conditions applied

Indiff Inc Comp Non-Inc Comp Indiff Inc Comp Non-Inc Comp

0.97 53.6% 3.8% 42.6% 35.5% 60.7% 3.8%
0.96 53.6% 3.8% 42.6% 35.5% 60.7% 3.8%
0.95 53.6% 3.8% 42.6% 26.2% 72.7% 1.1%
0.94 53.6% 3.8% 42.6% 26.2% 72.7% 1.1%
0.93 53.6% 3.8% 42.6% 25.7% 73.8% 0.5%
0.92 53.6% 3.8% 42.6% 25.7% 73.8% 0.5%

Net revenue maximizer

Minimum Floor
Adjustment Factor

3 applicable conditions All conditions applied

Indiff Inc Comp Non-Inc Comp Indiff Inc Comp Non-Inc Comp

0.97 54.6% 0.0% 45.4% 51.4% 24.0% 24.6%
0.96 54.6% 0.0% 45.4% 49.7% 30.1% 20.2%
0.95 54.6% 0.0% 45.4% 47.0% 36.6% 16.4%
0.94 54.6% 0.0% 45.4% 47.0% 38.8% 14.2%
0.93 54.6% 0.0% 45.4% 47.0% 39.3% 13.7%
0.92 54.6% 0.0% 45.4% 45.9% 41.0% 13.1%

conditions. Under the all-condition-applied readmissions penalty, the percentage of incen-

tivized hospitals increase to 75.4 and no hospital remains unincentivized while incurring
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the penalty. The percentage of indifferent hospitals decreased from 33.3 to 24.6. As the all-

condition-applied penalty incentivizes the previously unincentivized hospitals to reduce,

the reduction in readmissions at those hospitals reduces the anticipated Risk-adjusted Ex-

pected Readmissions in future years for other hospitals as well. Hence, the lower bound of

the incentive compatible region shifts downward as the Risk-adjusted Expected Readmis-

sions decreases. In the all-conditions-applied readmissions penalty analysis, reducing the

minimum Floor Adjustment Factor does not increase the number of incentivized hospi-

tals. This suggests that the 0.97 Floor Adjustment Factor captures all of the potentially

incentivized hospitals in the sample.

If hospitals were to maximize patient margin net income instead of operating mar-

gin net income, i.e., patients are viewed to be more profitable, only 3.8 percent of the

hospitals are incentivized to reduce readmissions and 42.6 percent prefer to not reduce

readmissions despite incurring penalty. If the objectives were to maximize net revenue

(inpatient revenue HRRP penalty) which represents the highest possible patient prof-

itability, none of the hospitals are incentivized to reduce readmissions and all hospitals

incurring penalty (45.4 percent) maximize their net revenue by maintaining their current

readmission performance. A larger financial return on readmitted patients translates to

less ability for the current HRRP penalty to incentivize hospitals to reduce readmissions.

Under the all-conditions-applicable readmissions penalty and minimum Floor Adjust-

ment Factor of 0.97, 60.7 percent of the patient margin net income maximizers and 24.0

percent of the revenue maximizers are incentivized to reduce readmissions, but both are

short from operating margin net income maximizers (75.4 percent). As we decrease the
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(a) Without competition (b) With competition

Figure 2.5. Competition effect on incentive compatibility of 183 sample
California hospitals: 0.97 minimum Floor Adjustment Factor, 3 applicable
conditions, operating margin net income maximizers

(a) Three applicable conditions (b) All conditions applied

Figure 2.6. All conditions applied readmissions penalty effect on incentive
compatibility of 183 sample California hospitals: 0.97 minimum Floor Ad-
justment Factor, patient margin net income maximizers

minimum Floor Adjustment Factor, the percentage of incentive compatible and non-

incentive compatible hospitals increases and decreases respectively for both cases.
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(a) Minimum Floor Adjustment Factor: 0.97 (b) Minimum Floor Adjustment Factor: 0.92

Figure 2.7. Minimum Floor Adjustment Factor effect on incentive compat-
ibility of 183 sample California hospitals: All conditions applied penalty,
net revenue maximizers

Figures 2.5, 2.6, 2.7 provide a graphical view of individual hospitals incentive compat-

ibility. Indifferent (ID), Incentive Compatible (IC), and Non-Incentive Compatible (NIC)

hospitals are identified by a circle, cross, and triangle respectively for various model pa-

rameters. The vertical axes represent the fraction of total inpatient revenue contributed

by Medicare beneficiaries. The horizontal axes represent the difference between the Pre-

dicted and Expected Readmission Rates which are weighted averages of the Risk-adjusted

Predicted and Expected Readmissions. The higher the value is the larger the gap between

the Predicted and Expected Readmission Rate is which indicates a poorer readmission

performance. Each data point on the plots represents one of the 183 sample California

hospitals.

Figure 2.5 visualizes the effect of strategic gaming between hospitals. Figure 2.5a

shows when the hospitals do not consider others reduction effort. In this case, hospitals
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that are performing better than their target (those with a negative predicted minus ex-

pected readmission rate) will not reduce their readmissions. They neglect a decrease in

their future target readmission rates due to others reduction effort. However, if hospitals

consider other hospitals reduction effort and their effect on their own expected readmis-

sion rate in future years, they will react by anticipating lower expected readmission rates.

This is shown in Figure 2.5b where hospitals with a negative but close to zero (predicted

readmission rate − expected readmission rate) value become incentive compatible. If

hospitals are maximizing operating margin net income as in here, the competition effect

induced by the relative performance measure structure financially incentivizes an addi-

tional 21.3 percent of hospitals, or increase from 39.9 percent to 61.2 percent, to reduce

readmissions.

Figure 2.6 shows the effect of increasing the number of applied conditions from the

initial three to all conditions when hospitals are maximizing patient margin net income

under the current HRRP structure (Floor Adjustment Factor of 0.98 in FY 2014 and 0.97

in FY 2015 and beyond). AS noted in Subsection 2.3.2, all conditions applied penalty

enables HRRP to incentivize hospitals that did not have an incentive compatible region

before and significantly improves the HRRP effectiveness. Notably, the fraction of incen-

tive compatible hospitals increases from 3.8 percent to 60.7 percent.

Even with the penalty applied to all conditions and a minimum Floor Adjustment

Factor of 0.97, the program may not be fully effective as some net revenue maximizing

hospitals are not incentivized because they are outside of the incentive compatible region

(Figure 2.7a). While hospitals performing worse but close to their target are incentivized

to reduce readmissions, ironically, those that perform far worse than the target are not
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incentivized to reduce. If the later were to reduce readmissions, loss in revenue due to

reduced patient volume outweighs the savings in HRRP penalty. This effect becomes more

substantial as the fraction of revenue from Medicare beneficiaries decreases (Figure 2.7a).

As discussed in Subsection 2.3.3, reducing the minimum Floor Adjustment Factor

may incentivize hospitals outside of the incentive compatible region. Figure 2.7b shows

the case with the minimum Floor Adjustment Factor reduced to 0.92 so that the Floor

Adjustment Factor decreases by 0.01 each year in the time period until 2020. We observe

17 percent more hospitals are incentivized to reduce. However, the worst performers in

terms of readmissions, hospitals on the far right of the plot, are still not incentivized to

reduce readmissions. This pattern is observed in Figure 2.6b as well. Under the current

HRRP penalty structure, an extremely low Floor Adjustment Factor will be required to

incentivize them. This shows that the current penalty structure fails to some degree in

protecting patients with the worst quality of care.

It is important to notice that, in general, the hospitals with a small fraction of rev-

enue from Medicare beneficiaries, notably below 30 percent, are not incentivized to reduce

readmissions (Figures 2.5, 2.6, 2.7). Since the revenue contribution from Medicare benefi-

ciaries is small the revenue at risk for penalty is negligible compared to the total revenue.

Policy makers need to be aware of the significance of this effect, especially if they expect

to broaden the effectiveness of HRRP among non-Medicare heavy hospitals.

2.4. Discussion

In this manuscript we linked readmissions performance to hospital financials under

the current HRRP penalty structure through a financial model of hospital admissions
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and identified the opposing effects of reducing readmissions on hospital net income: profit

loss due to reduced patient volume and savings by avoiding the HRRP penalty. Our model

predicts that not all hospitals are financially incentivized to reduce readmissions and for

others there exists a specific window of readmission rate where hospitals are incentivized

to reduce.

Our model demonstrates hospitals lack incentives to reduce readmissions for two rea-

sons: the readmission rate is outside of the incentive compatible region or the incentive

compatible region does not exist. For hospitals outside the incentive compatible region

a potential solution is to reduce the minimum Floor Adjustment Factor which effectively

widens the incentive compatible region. By increasing the maximal penalty under the

HRRP, hospitals also stand to lose more revenue. For certain hospitals which are resource

poor, such as safety-net hospitals, increasing the maximal penalty may have unintended

consequences which would need to be addressed before implementing this policy change.

For hospitals without an incentive compatible region, increasing the number of con-

ditions to which the readmission penalty is applied would create incentive compatible

regions. Moreover, for these hospitals, reducing the minimum Floor Adjustment Factor

will not have an impact on their incentive compatibility as there is no incentive com-

patible region to widen. Policymakers should note that this would affect the hospitals

even more disproportionately as the hospitals incentivized even before the reduction in

the minimum Floor Adjustment Factor will be punished more severely by the reduction

while the unincentivized hospitals will not be affected whatsoever.

Our results support the CMS’s decision to expand applicable conditions for FY 2015

to include patients admitted for an acute exacerbation of chronic obstructive pulmonary
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disease, elective total hip arthroplasty, and total knee arthroplasty (CMSb). CMS is

currently considering expanding the number of applicable conditions to all-cause (all con-

dition) readmission. In support of this effort, the National Quality Forum has already

approved a “Hospital-Wide All-Cause Unplanned Readmission Measure” for this purpose

(National Quality Forum). By expanding to an all-cause readmission metric, CMS will

further incentivize hospitals to develop more robust efforts to prevent readmission among

all their inpatients as opposed to concentrating on a few conditions and to make sure

hospitals are engaged to reducing readmission rates.

We find that the worst performers in terms of readmissions, are still not incentivized

to reduce readmissions even under extremely low Floor Adjustment Factors and all condi-

tions applied readmissions. Policymakers should be aware of the potential shortage of the

current penalty structure and combine an objective measure to ensure that all hospitals

are financially incentivezed to reduce readmissions.

On a positive note, we find that the strategic gaming between hospitals induced by the

relative performance measure in the penalty structure has a substantial effect in financially

incentivizing even more hospitals to reduce readmissions.

In addition to the limitations associated with the model assumptions, we acknowledge

the limitation that we do not consider the cost of reducing readmissions. Depending on

the degree of reduction, the cost may vary widely from high cost hospital-wide opera-

tional changes to cheaper and easily installable toolkits. We leave this component out

of the model and focus on the direct consequence of readmissions on the hospitals fi-

nancials. Incorporating any cost associated with the effort of reducing readmissions will
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disincentivize hospitals from such activity and reduce the effectiveness of the Hospital

Readmissions Reduction Program.

2.5. Conclusion

Our financial model of hospital readmissions suggests that only hospitals within a

window of readmission rate that is unique to each hospital and depends on its own char-

acteristics are financially incentivized to reduce readmissions as the Hospital Readmissions

Reduction Program intends. Especially, the program fails to incentivize hospitals (1) with

small fraction of Revenue contributed by Medicare beneficiaries, (2) with small fraction of

Medicare revenue contributed by the applicable conditions, (3) with Risk-Adjusted Pre-

dicted Readmissions much larger than their Risk-Adjusted Expected Readmissions, i.e.,

the worst performers in terms of readmissions, and (4) and hospitals with sufficiently large

operating margins, i.e., highly profitable hospitals. Within the current penalty structure,

increasing the penalty amount by expanding the penalty applied conditions may solve

some problems with incentive misappropriation while decreasing the floor adjustment

factor may solve others. But neither will solve the first.
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